Modelling capabilities at ZAMG for the effects of an atmospheric nuclear explosion

Christian Maurer (ZAMG), Dèlia Arnold (ZAMG),

Gerhard Wotawa (ZAMG), Matthew McKinzie (NRDC)

ZAMG: Zentralanstalt für Meteorologie und Geodynamik, Vienna Austria NRDC: Natural Resources Defense Council, Washington, DC, USA

What are the effects of a nuclear explosion?

Electromagnetic Pulse

A hypothetical scenario: Attack on a military base

Choosing a nuclear yield

Data Source: Kristensen, Hans M., and Robert S. Norris. "Russian nuclear forces, 2014." *Bulletin of the Atomic Scientists* 70.2 (2014): 75-85; and "US nuclear forces, 2014." *Bulletin of the Atomic Scientists* 70.1 (2014): 85-93.

Meteorologie und Geodynamik

Initial radiation

Thermal radiation

United States Department of Defense HPAC: Casualty tables

For an Unsheltered Population:

	Best Estimate			
	Prompt	Fallout	Total	
Fatalities	16,901	69,740	86,641	
Injuries	6,304	150,559	156,863	
Total Casualties	23,205	220,299	<u>→</u> 243,504	

For a Sheltered Population:

	Best Estimate			
	Prompt	Fallout	Total	
Fatalities	10,169	16,208	26,377	
Injuries	16,737	39,280	56,017	
Total Casualties	26,906	55,488	<mark>→</mark> 82,394	

First steps: Developing a prototype single-isotope source term for FLEXPART: Fallout Cloud

N

(.)

li-Venezia Giulia

Diameters:

o Bozen

- Umbrella: ~ 8.4 km
- Stem: ~2.8 km

Yield: 200 kt

Following the work of Rol al. (2014)

1st scenario: October 2014, 2 days accumulated precipitation

1st scenario: October 2014, 2 days accumulated Cs-137 deposition

2nd scenario: November 2014, 2 days accumulated precipitation

ZAMG

Geodynamil

2nd scenario: October 2014, 2 days accumulated Cs-137 deposition

FFG-FORTE-Projekt "ABC-Maus" (2019-2021): Overview of tackled topics

The source term: Assumptions for the radionuclide mix

Radionuclide mix provided by the *Radiation and Nuclear Safety Authority of Finland* STUK (based partly on *Kraus and Foster, 2013 & 2014*) – assumptions:

- Uranium-fuelled or Plutonium-fuelled gun-type: 25kg (eqiv. to 10 kt yield), 94% U-235, 6% U-238
- Pure-fission weapon (yield < 300 kt), no fusion
- Surface burst (► stem + umbrella cloud)
- Underlying surface: Concrete and asphalt mix
- Internal cladding material (bomb structure): Stainless steel
- Activation products (also included) compared to fission products are hardly relevant > surrounding of site has minor impact
- *Glasstone and Dolan (1977)*: 1 kt = 1.45E+23 fissions
- Nuclide specific cumulative or independent U-235, U-238 and Pu-239 fission product yields based on *England and Rider (1993a, 1993b)* multiplied with the number of fissions and decay constants give specific activities at t=0.

Source term geometry

- Mushroom with stem and hat according to Harvey et al. (1992) for surface burst: Top of hat top_{Hat} and stem top_{Stem} as function of yield [kt]. Differences in empirical formulae for top_{Hat} and top_{Stem} according to yield thresholds 2 and 20 kt. Radii of hat r_{hat} and stem r_{stem} are also a function of yield.
- Detonation height [a.g.l.]: If critical height (also a function of yield) is exceeded: Stem is omitted, W3 and W4 are combined (like in the Swedish MATCH model). Surface burst > Air burst.
- However: Vertical structure (i.e., a mushroom cloud with stem and hat) as well the horizontal extension seem to have a negligible impact according to literature. What counts are the total explosion column height as well as the activity-particle size and activity-height distribution.

Stabilized Mushroom Cloud (~5 to 10 minutes after a surface detonation) (https://physics.stackexchange.com/ guestions/276999/nuclear-explosionconfined-by-gravity)

The number-particle size and activity-particle size distribution

- Activity should not be distributed according to number-particle size distribution(s) ► large particles would be under-represented. Rather it should be distributed according to activity-particle size distribution(s) (i.e., (an) upper moment(s) of the number-particle size distribution(s)).
- Using an overlap of two log-normal activity-particle size distributions (*Harvey* et al., 1992; Baker et al., 1987; Ledger, 2015, MATCH model) seems to be state of the art.
- In order to cover dispersion and deposition over a wide range of distances a wide range of particle sizes occurring in a nuclear explosion is needed to be covered. The particle range follows from the following considerations:

Particles > ~ 250 μm fall out in the immediate vicinity of the explosion site (*Bartnicki und Saltbones, 2003*).

Particles > ~ 20 μm (as, e.g., predominately used in *Rolph et al., 2014*) **fall out within the first 24 hours and within some 100 km** (*Baker, 1987*) ► ABC-IS should cover also longer forecast lead times and distances!

Particles < ~5 μm will remain aloft even for periods longer than one week (*Baker, 1987*). They are not relevant for fallout in surface emergency response, but for military aviation purposes it may be important to have estimated activity concentrations in the atmosphere.

Vertical distribution of activity

- According to Buckley (2009): Calculate central particle group stabilization heights and corresponding standard deviations based on empirical relations connected to the Cloud Rise Module (CRM) of DELFIC as nonlinear function of ln(yield[kt])
- Calculate vertical Gaussian activity distribution and integrate it over the wafer segments, adapt cloud top and (for air bursts) bottom heights (±3σ) for consideration of the invisble part of the cloud.
- Highest activities should be found in the last but one uppermost wafer and for the smallest particle size due to toroidal motion during cloud stabilization.
- Generic noble gas is distributed equally over all wafers.

Example source term

Total released activity [*Bq*]: 9.6e+20 between 19530317 132000 and 19530317 133000

Nevada test Annie (16 kt, Tower burst detonated at 91 m a.g.l.)

ECMWF-ERA5-re-analysis profils (grey) and historic profiles (black) for u- und vcomponents of wind [m/s]. ERA5 is used for driving FLEXPART.

Evaluation for six historic Nevada US-tests I: Arrival times [h]

Evaluation for six historic Nevada US-tests II: Ground shine dose rates [mR/h] at T+12

 Case: Figure of Merit in Space Fractional Bias Normalized Mean Square Error 95. perc. observations 95. perc.

 model:
 72.22 -1.81 55.94 25.45 1.170 Easy: 61.76 -1.81 27.74 10.7 0.866 Harry: 82.35 -1.92 84.06 75.6 1.343

Simon: 92.45 -1.52 81.45 33.7 3.136 Smoky: 73.56 -1.80 113.2 26.3 1.353 Sugar: 62.5 -1.41 11.88 4.87 0.509

Early Detection

80

Geodynamik

Early Detection of a nuclear blast can be performed based on data from the International Monitoring System (IMS) of CTBTO/Vienna

Early Detection (2)

 Seismic signals –ground motion caused by explosion (for underground or near-surface)

Seismogram of the announced nuclear test in North Korea in 2013. The signal was recorded not only at the Conrad Observatory, but also at all other seismic broadband stations in Austria.

• Infrasound signals – atmospheric explosions

Early Detection (3)

ZAMG

Zentralanstalt für Meteorologie und Geodynamik

Seismic Signals detected in Ukraine – Belarus – Russia Region

Specific conclusions

- Based on existing publicly-available literature a default **nuclear explosion source term to be fed into FLEXPART atmospheric transport and dispersion calculations was developed** in the frame of the project ABC-Maus.
- It is based on a bimodal log-normal activity particle-size distribution and a normal activity distribution in the vertical around central particle group altitudes. Local to global fallout is considered (particles of 2.2 to 173.2 μm).
- An evaluation was performed for the near field based on six historic US Nevada tests. Arrival times are satisfactorily modelled (results are similar to *Rolph et al. (2014)*), dose rates due to ground shine are considerably underestimated. The nuclide mix might need to be revisited.
- Source terms of other organizations show deficiencies as well for the Nevada tests , e.g., SMHI-MATCH.

Overall conclusions

- Open-source information can be used to calculate the effects of a nuclear explosion in terms of crater, blast, thermal, initial radiation and fallout effects.
- Military targeting requirements for destruction of hardened objects involves surface or near-surface bursts, maximizing fallout.
- For a 200 kt nuclear explosion, the prompt nuclear weapons effects are far more localized than the fallout effects, which were shown to extend across international boundaries for a hypothetical scenario.
- Variations of fallout patterns with weather conditions are a motivation for non-nuclear weapon states to develop a capability to model nuclear explosive effects to mitigate humanitarian impacts of a nuclear conflict.
- Humanitarian impacts of nuclear war continue to be relevant to our societies, given the large nuclear arsenals retained decades after the end of the Cold War, and new nuclear weapons development in some states.
- ZAMG is prepared for early detection as well as estimating plume dispersion after an atmospheric nuclear explosion.