

Neue Entwicklungen und Produktion in der kommerziellen Radiopharmazie

Roland Müller

SL Company Organisation

Occupational safety & accreditation & certification & quality management

Radiopharmacy Seibersdorf

Our business concept:

Commercial contract manufacturing organisation (CMO) with no own marketing authorizations and no own intellectual properties

Our services:

- GMP contract manufacturing of radiopharmaceuticals
- Development, optimization and validation of production lines for radiopharmaceuticals

Radiopharmacy Services

Our in-house activities include:

- Production
- Quality Control
- Batch release
- Stability testing
- Ordering and transport logistics

We can cover all services from ordering to delivery (for shipments external couriers are subcontracted)

Radiopharmacy Segments

Product segments at Seibersdorf:

- Diagnostics (F-18)
- Therapeutics (Lu-177, Ac-225)
- Radionuclide Production (Lu-177)

Radiopharmacy customers

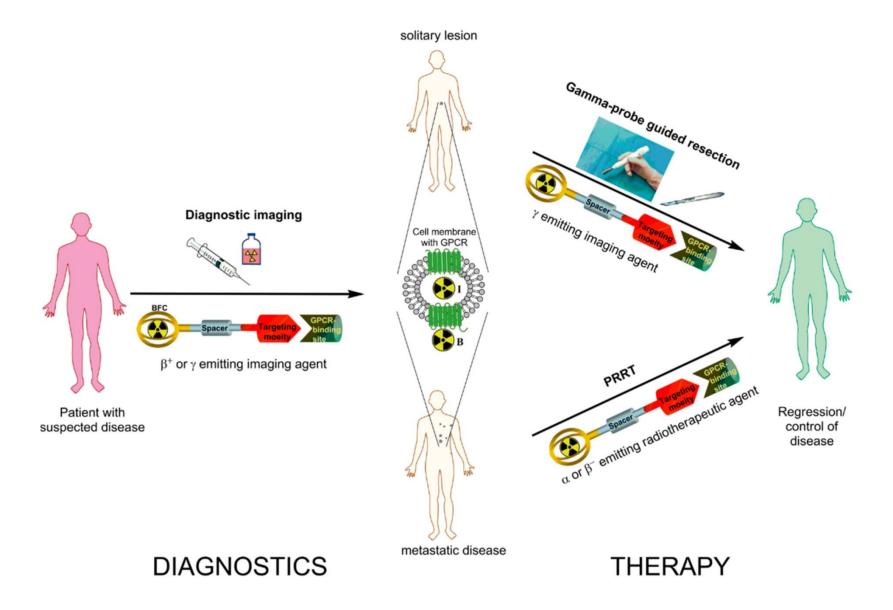
Our direct customers are:

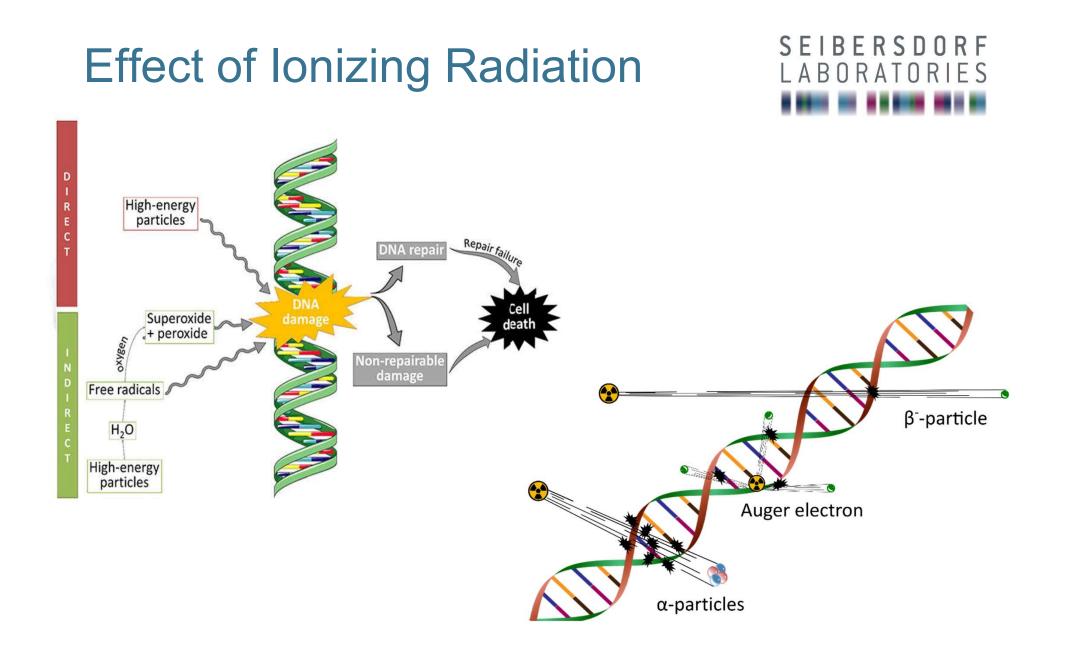
- Pharmaceutical wholesaler
- Pharmaceutical companies

Our indirect customers are:

Clinical sites with nuclear medicine

Location


Radiopharmaceuticals



- Growing Market/demand
- Personalised medicines (diagnostics & therapy)
- Short shelf life (< 1 week)</p>
- Production on demand only no warehousing
- Radioactive transports required

Theranostic approach

Theranostic pairs (part 1)

DIAGNOSTIC			THERAPEUTIC		
nuclide	half-life	decay	nuclide	half-life	decay
Cu-64	13 h	PET	Cu-67	2,6 d	beta minus
As-72	1,1 d	PET	As-77	1,6 d	beta minus
Sr-83	1,4 d	PET	Sr-89	2,1 d	beta minus
Y-86	15 h	PET	Y-90	2,7 d	beta minus

Theranostic pairs (part 2)

DIAGNOSTIC			THERAPEUTIC			
nuclide	half-life	decay	nuclide	half-life	decay	
I-124	4 d	PET	I-131	8 d	beta minus	
Pb-203	2,2 d	SPECT	Pb-212	11 h	alpha	
Ga-68	1 h	PET	Lu-177	7 d	beta minus	
In-111	2,8 d	SPECT	Ac-225	10 d	alpha	

Alpha particle emitters

Thorium-226 decay chain:

Th-226->Ra-222->Rn-218->Po-214->Pb-210->Bi-210->Po-210->Pb-206

Thorium-227 decay chain:

Th-227->Ra-223->Rn-219->Po-215->Pb-211->Bi-211->Pb-207

Thorium-228 decay chain: Th-228->Ra-224->Rn-220->Po-216->**Pb-212**->Bi-212->Pb-208

Thorium-229 decay chain:

Th-229->Ra-225->**Ac-225**->Fr-221->At-217->Bi-213->Pb-209->Bi-209

Other alpha emitters: At-211 and Tb-149

Terbium quadruplet

nuclide	half-life	application	
Tb-149	4 h	alpha therapy	
Tb-161	7 d	beta minus therapy	
Tb-152	18 h	PET	
Tb-155	5 d	SPECT	

All radionuclides commonly administered to patients in nuclear medicine are artificially produced

Most radionuclides for radiopharmaceuticals are produced by

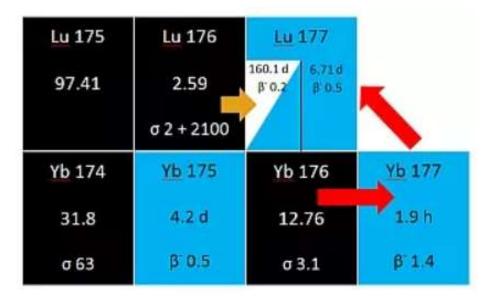
- > cyclotrons
- nuclear reactors
- radionuclide generators

Radionuclides

Considerations for commercial radiopharmaceutical production:

- Availability & number of suppliers (robustness of supply)
- Available Quantity
- ➤ Half-life
- > Cost
- Technical Quality Radionuclidic and chemical impurities
- Pharmaceutical Quality
- > Types and energies of emitting ionizing radiation
- Decay products
- Chemical properties for synthesis

Lu-177 production



- Uranium-235 undergoes spontaneous fisson by releasing neutrons
- > Neutrons normally used to continue the fission
- If other material lowered into ports are irradiated by this neutrons nuclear reaction takes place

Lu-177 production

Lu-177 carrier added (c.a.)

first production route, rather simple production, always contains Lu-177m (T_{1/2}: 160 d; < 0,024 %) and has lower specific activity (> 500 GBq/mg)

> Lu-177 non carrier added (n.c.a.)

more complex production, no Lu-177m and higher specific activity (> 3000 GBq/mg)

Lu-177 production

Lu-177m impurity in Lu-177 carrier added (c.a.)

Example: a patient dose of 7,5 GBq Lu-177 contains up to **1,8 MBq** Lu-177m (up to 0,024 %)

Ac-225 production

Production routes:

- ➤ Th-229 Generator
- Spallation of Th-232 [>100 MeV proton irradiation; contains Ac-227 impurity]
- Cyclotron/Proton irradiation: 226Ra (p,2n) 225Ac [proton energies of ~16,8 MeV]
- > Rhodotron, Betatron or Linac production route 226Ra (γ,n) 225Ra -> 225Ac

Measuring of Radioacitivity

Thermoluminescence dosimeter (TLD)

Probe dosimeter

SEIBERSDORF LABORATORIES

Contamination monitor Personal

contamination monitor

Dose rate meter SSM-1

PLEASE FELL FREE TO CONTACT US!

Dr. Roland Müller, MBA Head of Radiopharmacy Seibersdorf

Seibersdorf Labor GmbH 2444 Seibersdorf, Austria T +43(0) 50550-3485 | M +43(0) 664 235 18 01 roland.mueller@seibersdorf-laboratories.at http://www.seibersdorf-laboratories.at